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I. Abstract  

Common variable immunodeficiency (CVID) is a disorder arising from a host of monogenic 

lesions and is characterized by defective antibody production. Due to its variable etiology, the 

manifestations of CVID are diverse—ranging from susceptibility to infection to autoimmunity to 

exaggerated states of inflammation. Patients with autoimmunity require aggressive treatment, yet 

seldom receive it promptly. The field has yet to devise a method to predict which patients will 

present with autoimmunity and require additional treatment. We aim to integrate genetic 

analyses of CVID patients with functional analyses of cell signaling to group patients into 

autoimmune or non-autoimmune categories. To elucidate the phenotypic and signaling 

signatures in patients with CVID, we conducted stimulation assays with phospho-protein mass 

cytometry and higher-dimensional data analytics. Significantly, our mass cytometry panels 

identify all known circulating immune cell subsets. We created a novel two-component Gaussian 

mixture model approach to model the populations of responding and non-responding cells upon 

stimulation. Our initial statistical analyses demonstrated that eosinophils from CVID patients had 

defective gain-of-function responses to TLR1/2 stimulation. Furthermore, we found that CD16lo 

monocytes had inappropriate gain-of-function responses to stimulation with PMA/Ionomycin. 

We also found higher PD-1 expression in the effector CD8 T cells of patients. Our approach will 

lead to better characterization of signaling in CVID and will potentially allow better 

classification of patients with this disorder. We also expect that a better understanding of the 

signaling defects in the circulating immune cells of CVID patients will lead to new therapeutic 

approaches.  
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II. Introduction and Literature Review 

Primary immunodeficiencies (PIDs) are diseases caused by genetic lesions that impair 

immune system function. PIDs vary widely in their genetic etiologies and, therefore, in their 

cellular deficiencies and clinical manifestations (Picard et al, 2018). Genomic sequencing has 

become indispensable in diagnosing these disorders. When a patient is suspected to have a PID, 

their DNA is often sent for sequencing of genes relevant to immune function (Mafucci et al, 

2016). For example, Invitae, a medical genetics corporation, has a clinically approved PID panel 

that interrogates 207 PID-linked genes.  The “hits” found by PID sequencing panels provide a 

roadmap for a rational investigation of the genetic lesions that could conceivably manifest as a 

PID.  

 

 

 

 
 
 
 
 

 

 

 

 
Figure 1. A map of immune cell differentiation labeled with potential mutations and the 
resulting immunodeficiencies. Obtained from Kanehisa and Goto, 2000. 
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However, it has been found that individuals with the same genetic variants may have very 

different presentations (Toubiana et al, 2018). Furthermore, healthy individuals may possess 

known pathological variants without manifesting any clinical phenotype at all (MacArthur et al, 

2010). Additionally, sequencing cannot predict whether an undocumented mutation will be loss-

of-function, gain-of-function, or without phenotype at all. While in silico methodologies to 

predict putative pathological variants exist, forecasting downstream protein function from 

intronic or cryptic variants remains a challenge (Schwarz et al, 2014). Therefore, we cannot 

consider sequencing the solution to all diagnostic queries in the realm of clinical immunology. In 

a post-genomic age, it is absolutely necessary to broaden our understanding of PIDs by 

integrating genomic strategies with studies of cellular function.  

Common variable immunodeficiency is a poorly understood PID with multiple genetic 

etiologies that result in a decrease in immunoglobulin production and a predisposition towards 

infection. Patients have low levels of IgG and IgA and lack protective immune responses to 

vaccines; they often present with chronic sinusitis, bronchitis, and miscellaneous infections 

(Bonilla et al, 2016). The disease burden of CVID is relatively high for a PID, with one in 25,000 

people suffering from it. Diagnostically, CVID is only considered when other explanations of 

hypogammaglobulinemia (ie, X-linked agammaglobulinemia) are ruled out. Diagnosing CVID 

essentially pools a variety of patients into one diagnostic “box.” The heterogeneity of CVID may 

likely represent a group of disorders that are difficult to diagnose.  
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Clinical manifestations of CVID are highly diverse, spanning the gamut of 

immunodeficiency to autoimmunity to asymptomaticity (Cunningham-Rundles 2012). In cases 

of autoimmunity, patients often suffer from hemolytic anemia and thrombocytopenia.  The 

immune dysregulation in CVID is especially difficult to treat and the lifespans of patients 

suffering from autoimmunity are much shorter than those without such complications. 

Furthermore, a patient may suffer from autoimmune episodes and experience drastic decreases in 

quality of life before being treated for autoimmunity. 

Table 1. The 2013 ESID criteria for 
the diagnosis of CVID. Obtained from 
Ameratunga et al, 2014. 
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Recent advances in exome sequencing and SNP genotyping have improved our 

understanding of the pathogenesis of CVID; however, there is still no methodology to predict the 

disease course that patients will experience (Aggarwal et al, 2020). Therefore, the field requires a 

method to classify patients into autoimmune or non-autoimmune categories to aggressively treat 

the more severe cases of autoimmunity. We aim to do this by integrating analyses of patient 

exomes with analyses of cell function. Such a multi-modal approach has never been used to 

predict the clinical manifestation of CVID. In this project, we aim to enhance the diagnosis and 

treatment of CVID by integrating genetics and functional characterizations of cellular activity. A 

long-term goal of this study is to create a predictive model for CVID disease course.  

Phospho-flow cytometry is an indispensable method for analyzing signaling responses in 

immune cells (Krutzik et al, 2011). This method measures signal transduction in response to 

ligation of a cell-surface receptor by quantifying phosphorylation of downstream signaling 

intermediates. Traditional, fluorescence-based flow cytometry has long been a hallmark method 

for the functional analysis of PIDs (Takashima et al, 2017). However, these methods are limited 

in scope due to spectral overlap between fluorescent channels which leads to analytical maxima 

of ~10-15 markers. Using this approach, only a select few signaling pathways in a limited 

number of cell types can be analyzed in a single tube.  

A novel methodology to overcome this limitation is Cytometry by Time-of-Flight 

(hereby referred to as mass cytometry or CyTOF). CyTOF utilizes metal-tagged antibodies and 

time of flight mass spectrometry to allow for the characterization of over 35 cellular surface 

markers and phospho-proteins with single-cell resolution (Figure 2). Since the metal-tagged 

antibodies are 99%+ isotopically pure, there is minimal overlap between metal channels. Thus, 

mass cytometry mitigates a baseline concern of flow cytometry—spectral overlap. Limitations to 
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CyTOF include run-time throughput, expense, and sensitivity to cell surface proteins (Simoni et 

al, 2018). Still, CyTOF has immense power in its ability to characterize many cell types and 

produce large amounts of data from single experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this approach, one can conceivably analyze multiple cell signaling pathways in all 

circulating immune cells and their respective subsets. Notably, CyTOF creates enormous data 

sets and requires massive computational power to glean insights. This dilemma is ongoing and 

often solved with the introduction of dimensionality reduction algorithms for manageable data 

analysis (Nowicka et al, 2017). In this paper we aim to employ widely used single-cell data 

analysis tools (ie, PCA, t-SNE). These techniques will be used for clustering based on signaling 

Figure 2. CyTOF workflow and technology. The metals utilized in 
mass cytometry have much less overlap than the fluorescence overlap 
seen in flow cytometry, resulting in less compensation. Obtained from 
Blair et al, 2019.  
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events and will provide an exploratory function to discover statistically significant defects. 

Furthermore, we hope to innovate novel analysis tools for investigating cellular signaling by 

CyTOF.  

In a proof-of-concept paper, our laboratory used CyTOF to identify signaling 

abnormalities in one patient with a gain-of-function STAT1 mutation and one patient with 

STAT3 deficiency manifesting in hyper-IgE syndrome (HIES) (Choi et al, 2016). Interestingly, 

the paper identifies a potential compensatory response by identifying baseline signaling 

dysregulation in both of these patients; the patient with GOF STAT1 had increased basal 

phosphorylation of STAT3 in certain T cells. Similarly, the patient with STAT3 deficiency had 

high basal STAT1 phosphorylation in many cell types. In addition, both patients had cell types 

with defective responses to cytokines. For example, the GOF STAT1 patient had regulatory T 

cells with a significantly higher response to IL-10 in STAT1, even though STAT3 is the primary 

STAT protein downstream of the IL-10 receptor. This collection of signaling findings in 

monogenic PIDs led us to believe that the diverse clinical manifestation of CVID could be better  

 

 

 

 

 

 

 

 

 
Figure 3. Previous work in the Butte laboratory finding baseline signaling abnormalities in A) 
GOF STAT1 and B) STAT3 deficiency patients. Stimulation responses were also aberrant in C) 
GOF STAT1 and D) STAT3 deficiency. Obtained from Choi et al, 2017.  
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explained and stratified by pairing exhaustive cellular signaling analyses with exome sequencing. 

By measuring protein phosphorylation across all circulating immune cell types, we can 

identify individual aberrant signaling pathways within specific cellular subsets. Furthermore, 

these aberrancies will, hopefully, correlate to clinical phenotype and allow for a description of 

CVID that considers cellular function in addition to antibody levels and B cell maturity. In the 

future, understanding signaling deficiencies in patients may serve to elucidate novel targets for 

biologics in treating patients or easier diagnosis of more aggressive CVID. For example, if we 

find that a subset of patients who have an abnormal cell signaling signature are more susceptible 

to autoimmunity, aberrant signaling could be targeted by inhibitors and the patients could be 

closely monitored for autoimmune manifestations. One aim of this project is to analyze 

abnormal signaling in CVID to explain clinical manifestations of the disease.  

Additionally, our experiments possess the capability to study previously understudied 

cells (T cells, NK cells, etc.) in CVID patients. These cells may contain useful information on 

patients’ clinical phenotypes and have been neglected in many studies of CVID. By studying cell 

counts, surface protein levels, and signaling in all circulating immune cells, we will add to the 

depth of knowledge of CVID, which has classically been considered a B cell disorder. Indeed, 

previous work has shown defects in VDJ recombination in T cells in CVID (Ramesh et al, 2017). 

There may be many more defects in CVID beyond those in B and T cells, as well.  

Additionally, we will perform exome sequencing on all patients. Exome sequencing will 

identify defects in the coding regions of patients’ genomes. Currently, the genetic etiology of 

CVID is largely unexplainable; in fact, only about 10% of patients have a verifiable genetic 

explanation for their disorder. For the majority with a genetic explanation, genes relevant to B 

cell development (TACI, CD20, BAFF) are often mutated. By integrating genomics with 
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signaling analysis and cellular frequencies, we aim to see if there is a correlation between 

certain exome defects and cellular/clinical phenotype.  

CVID is split into subclasses utilizing the EuroClass system, which is dependent on B 

cell phenotypes (Wehr et al. 2007). Our work will integrate exome sequencing, signaling, and 

prevalence of cellular subsets to better understand CVID. By using this three-pronged approach, 

we will create an enormous data set that comprehensively paints a picture of CVID patient 

phenotype. Likely, we will be able to group patients based on genetics, signaling, and cell 

phenotypes. Another aim of our study is to correlate genomics, phenotype, and signaling 

patterns to understand the subtypes of CVID. 

Patients whom Dr. Butte has organized through his clinic and other connections will be 

studied—a first-of-its-kind large scale CyTOF analysis on this cohort of patients. The data 

collected through CyTOF will complement that exome sequencing and will allow us to assess 

how the immune cells of patients respond to different stimuli—highlighting aberrant signaling 

signatures. This will allow for an individual, precision-based approach in understanding the 

clinical symptoms of this disorder. 
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III. Experimental Design 

 We chose to use CyTOF to investigate the phenotype and signaling of CVID patient 

blood cells due to its ability to interrogate a wide range of cellular parameters, thus allowing for 

characterizations of cellular signaling across many cell types. By using common immune cell 

markers, our panel allowed for the recognition of all cells present in the blood from both the 

myeloid and lymphoid lineages (Table 2). Importantly, this represents all circulating immune 

cell subsets. 

 

 

 

 

 

 

 

 

 

 

Table 2. All cell types 
recognized by the 
phospho-signaling panel 
and the phenotyping panel 
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Our phospho-protein assay allowed us to functionally characterize cellular immune 

responses to many relevant stimuli (Table 3). For example, interferon and interleukin stimulation 

allowed for the assessment of signaling via the JAK/STATs pathways and the mTOR/AKT 

pathways, while Toll-like receptor (TLR) stimulation assessed the MyD88/IRF7 pathway. 

Furthermore, our panel also contained markers for proliferation (Ki67) and apoptosis (Cleaved 

Caspase 3). Interrogating all of these signaling pathways in all circulating immune cells provided 

a “birds-eye view” of immune responses in CVID patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3. All stimuli, receptors, and intracellular targets in the 
phospho-signaling panel. 
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In designing the CyTOF protocol, maintaining high cell counts and adequate cellular 

staining proved to be two of the biggest hurdles to a successful assay. High cell count (200,000 

cells/tube) was maintained by washing blood, which was necessary for removal of IgM in patient 

sera and then reconstituting the washed blood in one half of the original volume. The protocol 

was optimized for cell staining by adding surface antibodies after lysis of RBCs, as lysing and 

fixing samples before staining significantly reduced signal intensity during CyTOF. Furthermore, 

2 mM CaCl2 was added to emulate physiological conditions necessary for cell signaling. Staining 

buffer was phosphate-buffered saline (PBS) with 1% bovine serum albumin (BSA) added to 

block non-specific binding of antibodies.  

After washing the blood, Fc receptors were blocked for 10 minutes to further prevent 

binding of antibodies by their constant regions. Samples were then stained for 30 minutes at 

room temperature. They were stimulated with one of ten stimuli or PBS for fifteen minutes at 37 

°C. While certain signals may peak at different time points, we used a fifteen-minute stimulation 

since it is the industry standard. Samples were lysed and fixed for ten minutes. After this process, 

they were either left at -4 °C after lysis of RBCs or processed altogether. In the phenotyping 

panel, FoxP3 permeabilization buffer was used for thirty minutes at RT. In the phospho-protein 

panel, permeabilization was done with methanol on ice for twenty minutes. Intracellular staining 

on both panels was done for thirty minutes. Samples were washed and incubated with 

fixation/nuclear permeabilization solution and 125 nM Iridium DNA intercalator. After 

overnight incubation and washing, cytometry was run on a Helios mass cytometer.  
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FCS files were loaded into R for analysis. Data was first processed using the Logicle 

transformation, a hyperbolic sine transformation of data that has become standard in flow/mass 

cytometry analysis (Parks et al, 2006). A semi-automated gating scheme was then applied to all 

samples from a batch using CytoRSuite (Hammill 2019). After initial gating, manual gate editing 

was performed to ensure correct gating of rare cell populations such as basophils, mDC/pDCs, 

and plasmablasts. After gating, phospho-protein and surface marker data was loaded into a data 

frame in R and saved as a CSV. 

 

 

 

 

Figure 4. Schematic describing the CyTOF and exome 
workflow utilized in this paper. 
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 We used bootstrapping and permutation testing for statistical comparisons. This approach 

mitigates the influence of outliers and does not require data to be normally distributed. Upon 

optimization of the GMM pipeline, our data will be re-assessed and validated. Furthermore, our 

analysis process blinded us to control vs. patient samples, which mitigated bias in gating. 

We utilized two-component Gaussian mixture models (GMMs) to cluster cells into either 

“responding” or “non-responding” groups. Mixture models are powerful probabilistic models 

that are meant to detect subpopulations in a given distribution. Our GMMs describe both the 

means of the “non-responding” and “responding” groups and also describe the proportion of 

cells in either cluster (Figure 6). By creating a pipeline to identify “responding” and “non-

responding” groups, we created an automated, unbiased approach to analyze CyTOF signaling 

data.  

Figure 5. Representative gating scheme utilized in this study. 
Obtained from Choi et al, 2017. 
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In particular, we created a set of GMM functions that constrained the means of stimulated 

peaks to a specified percent difference from control peaks. This was done to catch shifts in cell 

response that may represent three or more clusters instead of two and to ensure statistical 

reliability of our models. Furthermore, our algorithm restrained the GMM models to have 

positive variance and mixing coefficients (percentage of data covered by one Gaussian 

component of the model) for both components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Example of a two-component Gaussian Mixture 
model fit to bimodal data. Obtained from Chan, 2016. 
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IV. Results 

Our phenotyping panel of cell surface markers permitted us to study cell frequencies 

within control and patient samples. Total switched B cell counts, ascertained by measuring all 

IgD- B cells, were depleted in CVID patients, while IgM+, CD38+ B cells (IgM+ plasmablasts) 

were increased in CVID patients, compared to healthy controls (Figure 7A). Furthermore, CD21 

expression on IgD+ memory and switched non-memory B cells was significantly reduced in 

CVID patients as well (Figure 7B). Notably, in addition to the aberrant predicted B cell 

phenotyping, we also found higher PD-1 expression in the effector CD8+ T cells of patients 

(Figure 8).  

By analyzing stimulation assays with phospho-protein mass cytometry and higher-

dimensional data analytics, we aimed to elucidate signaling deficiencies in patients with CVID. 

To deal with higher-dimensional data, we performed Principal Components Analysis (PCA) on 

signaling values in all cell types and found that patient eosinophils separated from their control 

counterparts (Figure 9A). Upon further interrogation, we found defective gain-of-function 

responses of pP38, pSTAT3, and Cleaved Caspase-3 to TLR1/2 stimulation in eosinophils 

(Figure 9B). We were curious about aberrant STAT responses in other cell types and found 

similar erroneous gain-of-function responses in CD16lo Monocytes in response to 

PMA/Ionomycin (Figure 10).  

 By creating GMMs on our data sets, we were able to collect subpopulation means from 

all of our stimulation condition-intracellular marker-subject-cell type combinations (Figure 11A). 

Importantly, this figure illustrates only a subset of the cell types that we analyzed and only the 

unperturbed, healthy control pSTAT5 mean values for those cell types. The full dataset is stored 

as shown (Figure 11B). 
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V. Discussion  

 Our experimental system has replicated findings from seminal studies on CVID (Warnatz 

et al, 2006). In particular, we show depletion of total switched B cells in CVID patients, a 

hallmark of the disease. Additionally, we found a decrease in CD27+ memory B cells (data not 

shown). These findings mirror previous seminal studies on CVID; they show inappropriately 

naïve B cell development in CVID patients. Utilizing CyTOF will expand on the relatively 

limited field of CVID signaling research.  

In addition to confirming prior findings, our work has also identified novel B cell defects 

in CVID. For example, a significantly higher amount of IgM+ plasmablasts were found in CVID 

patients. IgM is the initial antibody isotype secreted upon infection; this result indicates that 

CVID patients have impaired humoral responses with decreased isotype switching. Furthermore, 

CD21 expression on IgD+ memory and switched non-memory B cells is decreased. CD21 

facilitates B cell responses to complement-bound antigens (Tedder et al, 1997). With decreased 

CD21 expression, CVID patients may have impaired B cell receptor signaling, which will, in 

turn, contribute to deficient antibody responses. This finding further explains the lack of B cell 

signaling, response, and isotype switching in CVID patients. 

Our novel results finding higher PD-1 expression on effector CD8+ T cells leads us to 

posit that humoral and cytotoxic immunity are jointly implicated in the pathophysiology of 

CVID. PD-1 is critical for maintaining self-tolerance and is also a marker of exhausted T cells 

(Dai et al, 2014). Our data shows a bimodal distribution of PD-1 expression on effector CD8+ T 

cells within CVID patients. Perhaps, upon further analysis, it will be found that CVID patients 

with autoimmunity are in the group of patients with increased amounts of exhausted T cells due 

to their continuous signaling in response to self-antigen. It is also quite possible that increases in 
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PD-1 on the T cells of some patients result in defective cytotoxic immunity in these patients and 

further contribute to their predisposition to infection. In future work, we will determine if there is 

a correlation between PD-1 expression and clinical manifestation. 

 It has also been found that eosinophils play a role in autoimmunity (Diny et al, 2017). 

Abnormal cellular signaling in this cell population suggests a previously unidentified role for 

innate immune cells, in particular eosinophils, to contribute to the pathology of CVID. Further 

work must be done to better understand the precise role of eosinophils in this disorder.  

 We have created a novel methodology for analyzing cellular signal responses with 

constraints. By modeling signaling parameters in higher-dimensional CyTOF data, we aim to 

utilize escape the pitfalls of many statistical methods associated with higher-dimensional data 

(Ronan et al, 2016). Our procedure allows for the conventional statistical analysis of CyTOF 

data, something not afforded by many algorithms currently in use.  

 The methodology utilized in this paper described a feasible procedure for gating and 

extracting CyTOF data, performing model fitting, and then utilizing this data for analysis. Our 

algorithm can be generalized and utilized in CyTOF or high-dimensional flow cytometry data of 

any order. In particular, this system will be useful for extraction of useful parameters such as 

subpopulation means, variances, and proportions from large data sets. We aim eventually to 

refine this model and release it as an open-source R package.  

In our methodology, we first created an unrestrained model on our unperturbed samples, 

both healthy and CVID, and applied the parameters from the unrestrained model as initial values 

for our stimulated data. Then, we set constraints on the ability of our restrained model to deviate 

from the unrestrained means. This allows us to ensure that both components of our models do 
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not become aberrantly high under stimulation conditions. Hopefully, this will be an added 

safeguard against erroneously modeling our data.  

Having run models with different constraint values (10%, 25%, 50%, 100%, 200%), what 

is left is to assess which constraint values both accurately represent the subpopulations of our 

data while also serving the quality control function of flagging distributions which may be tri-

modal or more. The constraints serve as an important role in the automation and control of our 

models as they are applied to every cell type-signaling pathway-subject-stimulation condition. In 

the future, this work will serve as a model for phospho-signaling mass cytometry and simplify 

the analysis of CyTOF data. This project, therefore, will be two-fold; we aim to both improve the 

analysis of mass cytometry data generally and to use improved algorithms to better understand 

CVID. 
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VI. Materials and Methods  

Human Blood Collection 

All human blood was obtained through protocols approved by the institutional review board. 

Written informed consent was obtained from all donors. Peripheral blood samples were collected 

from 14 healthy donors and 14 patients with CVID.  

CyTOF Antibodies 

We utilized both purchased and in-house conjugated antibodies through the UCLA Flow 

Cytometry Core (Table 4).  

Staining and Processing  

Heparinized blood samples were washed with PBS+1% BSA to remove IgM from serum. 

Without this step, serum IgM would be bound by anti-IgM CyTOF antibodies and cellular signal 

intensity for this marker would be incredibly weak. Blood was then supplemented with 2 mM 

CaCl2, incubated with FcX (BioLegend, 422302) for 10 minutes at RT, stained with appropriate 

surface antibodies for 30 minutes.  

Phosphorylation Panel 

After surface staining, samples were washed again, stimulated with IL-2 (Peprotech, 200-02), IL-

6 (Peprotech, 200-06), IL-10 (Peprotech, 200-10), IL-21 (Peprotech, 200-21), IFN-α 

 (Cell Signaling Technology, 8927SC), IFN- γ (Peprotech, 300-02), R848 (Invivogen, vac-r848), 

PAM3CSK4 (Invivogen, tlrl-pms), LPS (Sigma-Aldrich, L4391), PMA/Ionomycin (Sigma-

Aldrich, P1585, I3909), or PBS as control at 37 degrees for 15 minutes. Red blood cells were 

then lysed using Lyse/Fix Buffer (BD Biosciences, 558049). Cells were washed, put on ice, and  
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 Table 4. A) Intracellular panel with antibodies for cell 
signaling interrogation highlighted in pink B) Phenotyping 
panel.  
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then permeabilized with methanol. Samples were then stained for intracellular phospho-proteins 

and incubated with Fix/Perm Buffer (Fluidigm, 201067) and 125 nM Iridium DNA intercalator 

(Fluidigm, 201192B) and washed with PBS+1% BSA and distilled water (Invitrogen, 10977023) 

before being run.  

Phenotyping Panel 

After surface staining, red blood cells were then lysed using Lyse/Fix Buffer. Cells were washed, 

put on ice, and then permeabilized with FoxP3 Perm Buffer (BioLegend, 421402). Samples were 

then stained for FoxP3, incubated with Fix/Perm and 125 nM Iridium DNA Intercalator, and 

washed with PBS+1% BSA and distilled water before being run.  

Exome Sequencing 

DNA from whole blood was extracted and then sent to Macrogen for whole-exome sequencing.   

Statistical Analysis and Code  

We utilized permutation testing in R to generate reference distributions of test statistics. By 

performing 20,000-200,000 permutations and referencing our observed parameters to a 

distribution of the test statistic, we mitigated the influence of outliers in our data. We calculated 

two-sided p-values through the permutationTest2 function in R (R Core Team, 2014). 

Bootstrapped means and calculated 95% confidence intervals are shown in all relevant figures. 

The CytoRSuite package in R was utilized for gating (Hammil, 2019). Manual gates were drawn 

with the same cellular populations analyzed from date to date. Values of zero were removed 

from the data and are common statistical noise in all CyTOF datasets.  

At first, the Mixtools package in R was utilized (Benaglia et al. 2017). After trial and error, a 

new set of GMM functions was made with the framework provided by Fong Chun Chan, a 

bioinformatician at Achilles Therapeutics (2017). These functions are highly manipulatable in 
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the constraints that they impress on our models; in particular, they allow for restraints on 

deviation in the means of a new model from a given mean initialization pair.  
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VII.  Future Experiments 

While our experiments show signaling differentials between healthy controls and CVID 

patients, further work to validate our conclusions must be done. To do so, we have isolated 

peripheral blood mononuclear cells (PBMCs) from all patients and will reaffirm our work 

through flow cytometry stimulation assays. This would involve re-stimulation with the 

cytokine/TLR agonist of interest and interrogation of the defective signaling pathway. If 

interesting patterns show up in CVID signaling response, or in a subset of patients, then the 

relevant PBMCs can be utilized for miscellaneous other assays such as Western Blots. This 

defective signaling will then be connected to patient clinical presentation. Our immediate hurdle, 

however, is the analysis of our CyTOF data. 

Means from all cell type-signaling pathway-stimulation condition-patient combinations 

have been extracted. Even with computational aberrancies and lack of some low-yield cells 

(Plasmablasts, pDCs), over 20,000 individual models have been created from each constraint 

level of our data. In sum, having run these models limiting deviation from unperturbed means at 

the levels of 10%, 25%, 50%, 100%, and 200%, we have over 100,000 models to assess.  

We aim to quickly and efficiently access the quality of these models using goodness-of-

fit (GoF) tests such as Pearson’s Chi-Square Test, the Kolmogorov-Smirnov Test, and the 

Cramer-Von-Mises Test; these tests provide statistics to assess how well the empirical 

distributions from our CyTOF data is represented by our two-component Gaussian models. We 

will also look at how well models fit with different log-likelihood differences. Based on trial and 

qualitative observation of which tests best discern improper models from well-fitting ones, a 

standard test will be selected for generalizable quality control of our GMMs.  
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Still, it will conceivably be difficult to assure that all of our models are decent fits for the 

empirical data collected. To address this, we will create an easy plotting function in R to gauge 

our fits qualitatively. Scripts are currently being written to perform GoF quality control and 

graphing of our data along with the models that have been fit to them. This will allow for quick 

verification of model fits. Specifically, we are writing scripts to plot many fits (50+) on one page 

with a green, red, or orange outline dependent on goodness-of-fit and if the model is pushed to 

the edge of the constraints. If the model is pushed to the edge of the constrained values, it must 

be evaluated to ensure the validity of the model.  

As an aside, our calculations still take over 2 hours to apply constrained GMMs over all 

of our stimulation data. Therefore, it may be necessary to utilize the ‘Rcpp’ package and write R 

functions in C++ to expedite calculations by virtue of memory allocation (Eddelbuettel and 

Francois 2011).  

 Once our models all verifiably describe our empirical data well, we will then perform 

batch effect correction. Batch effects are statistical noise that exists in high throughput 

experiments due to differences in handling, staining, or miscellaneous other non-biological 

factors and represent no biological effect. Batch effects will be corrected by calculating the 

bootstrapped mean of the “non-responding” healthy control unperturbed means and then 

calculating adjustment factors to align every control subject to have the same baseline values. 

These same adjustment factors will be applied to patient phospho-signaling values from the same 

date. 

After quality control of our models using GoF tests and correcting for batch effects, we 

will perform statistical analysis on the fold-change differences in signaling responses to stimulus 

between healthy controls and patients. will require gauging the 95% confidence interval of 
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means on healthy control responses to stimulus and then individually comparing patient means to 

the standards computed from the controls. Similar methodology was utilized in a previous paper 

analyzing cell signaling in PID patients (Choi et al, 2016). To expand on this approach, we will 

leverage the mixing coefficients provided by GMMs. By considering the mixing percentage of 

the Gaussian components of our models, we can both analyze the mean response to stimulus as 

well as the proportion of cells responding. This technique permits studying not only defects in 

the ability to signal fully but also defects in the ability of a subgroup of cells to signal.   

Our data science approach further requires the use of dimensionality reduction. We will 

utilize PCA to interrogate our higher dimensional data and to locate defective signaling axes in 

CVID patients. Furthermore, when enough patient data is available, we aim to use machine 

learning classifiers such as Support Vector Machines (SVM) to utilize cellular signaling and 

genetics as a methodology for predicting which patients will suffer from autoimmunity and 

which patients will suffer from solely immunodeficiency. Other work has done this to 

computationally diagnose CVID in comparison to other Primary Antibody Deficiencies (PADs); 

however, to our knowledge, no work has looked to stratify the phenotype of CVID patients 

utilize machine learning (Emmaneel et al, 2019). 

Lastly, we aim to incorporate exome sequencing in our analyses and correlate genomics, 

signaling measurements, and cell population frequency to clinical phenotype in hopes of better 

understanding this incredibly complicated condition. Potential difficulties in incorporating 

genetics into our approach include the possibility of patient mutations in two genes encoding for 

two components of a signaling pathway; without a priori knowledge of how each mutation 

affects the function of its protein product (gain-of-function/loss-of-function/no effect), it will be 
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difficult to definitively assess the relevance of a genetic result in our panel. However, we hope 

that our signaling work will help elucidate any biological effect in these situations.   
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7B. 

Figure 7. A) Patients with CVID do not have significantly more non-switched B Cells but do 
have significantly less switched B Cells. Switched vs. Non-switched was determined by the 
presence of IgM on the cell surface. B) There is a significant increase in the amount of IgM+ 
plasmablasts in CVID patients. C) CD21 Expression is decreased on IgD+ Memory B Cells 
and Switched Non-Memory B Cells.  
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Figure 8. PD-1 Expression on Effector CD8+ T Cells is increased, while this overexpression 
is not seen on other T cell subsets.  
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Figure 9. A) Principal Component Analysis (PCA) showing separation of Eosinophil populations from 
other cell subtypes, thus prompting further analysis. B) Eosinophil responses to TLR1/2 stimulation 
results in defective pP38, pSTAT3, and cleaved Caspase3 response.  
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10. 
 

Figure 10.  Defective pSTAT5 and pSTAT3 responses in CD16lo Monocytes in response 
to PMA/Ionomycin.  
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11A. 
 

Figure 11. A) Gaussian Mixture Model means from unperturbed samples of healthy controls in a set 
of the cell types analyzed B) The R data frame with final mean, variance, and mixing coefficient 
(lambda) values for all stimulation condition-intracellular marker-subject-cell type combinations. 
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